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Abstract 
 

Variations in plant functional traits might reveal the adaptation strategies of vegetation under changing environment. However, 

few studies have focused on the variation of dominant plant functional traits in changing soil water content in marsh wetland 

of the arid regions. In this study, functional traits were investigated in the dominant species Phragmites australis growing at 

distinct soil water contents in marshes of the arid middle-lower reaches of the Shule River Basin in Northwest China. Three 

soil water gradients (33.38 ± 1.40, 15.97 ± 1.99 and 10.22 ± 1.61%) were identified from three marsh sites. Results showed 

that leaf thickness, specific leaf area, maximum height and leaf phosphorous content in P. australis were significantly varied 

from the high soil water to low soil water in arid marshes. Soil water content driven variations in functional traits of P. 

australis, mainly by its effect on soil salinity and available nitrogen, affected the functional traits of P. australis. In conclusion, 

in marshes of arid regions, P. australis adapted well to resource-poor habitats through the coordinated combination of multiple 

functional traits i.e., low specific leaf area, leaf nitrogen content and leaf phosphorous content, high leaf dry matter content and 

leaf thickness, which reflected that P. australis had conservative strategy. © 2021 Friends Science Publishers 
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Introduction 
 

Plant functional traits usually explain the growth and 

photosynthetic rate of plants in changing environment. Plant 

morphological, physiological and phenological characters 

are used as ecological strategies and regulate the response of 

plants to environmental factors, influencing other nutritional 

levels and ecosystem function (Pérez et al. 2013; Zuo et al. 

2018). Functional traits are core indicators to explore how 

ecosystems respond to and adapt to a vary environment (Niu 

et al. 2018). For instance, specific leaf area (SLA) was 

positively correlated with growth rate, photosynthetic 

capacities and nutrient concentrations (Long et al. 2011; 

Scalon et al. 2017), while leaf nitrogen concentration (LNC) 

and leaf phosphorus concentration (LPC) were positively 

related to each other, similar to photosynthetic rate (Chen et 

al. 2013; Jiang et al. 2015). It has been shown that shifts in 

plant functional traits and trait syndromes cope with many 

key ecological problems, from individuals to ecosystems 

(Pérez et al. 2013). Therefore, identifying plant functional 

traits through their responses to environmental changes is 

necessary to improve our ability to predict future ecosystem 

functions (Wright et al. 2017). 

Soil water availability is one of the important factors 

that restrict photosynthetic assimilation of CO2 and growth 

of plants in arid regions (Xu and Li 2006), and its content 

can affect soil nutrient availability and plant nutrient 

absorption capacity, thereby it will directly or indirectly 

affect the floral composition and trait characteristics 

(Barbieri et al. 2019). Meanwhile, the spatial pattern of soil 

water availability plays a vital role in the formation of plant 

adaptability and the determination of species composition in 

arid habitats (Xu and Li 2006). Plant adapted to different 

levels of soil water availability commonly develop trait 

variations (e.g., leaf area, leaf thickness and SLA) or a 

combination of traits (Kołodziejek and Michlewska 2015) 

which often reflects the balance of resources allocation under 

contrasting soil moisture conditions (Jiang et al. 2015). 

Phragmites australis (P. australis), as a perennial 

helophyte with a wide range of strong rhizomes system, is 

one of the most widely distributed and most productive 

plants all over the world and is often the single dominant 

species in its habitats (Liu et al. 2018). Due to its high 

intraspecific diversity and phenotypic plasticity, it also 

has widespread ecological ranges and the ability to adapt 

to adverse environmental conditions (Eller et al. 2017). 

P. australis distributes widely in marshes of the arid 

middle-lower reaches of Shule River Basin, China 

(Gong et al. 2011; Guo et al. 2015). This affords an 

opportunity to explore the variation patterns of functional 
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traits of P. australis in response to different soil water levels 

in the arid marshes, because it is a biological index as its 

morphology often changes with the change of growth 

environment (Engloner 2004). 

The Shule River Basin is divided into the Shule River 

system in the north and the Suganhu Lake system in the 

south. The basin emerged from the end of Pliocene due to 

the increase in the terrain of the intermountain plains 

resulted from the uplift of Qilian Mountains in the north 

margin of the Qinghai-Tibetan Plateau. The alternation of 

tertiary and quaternary glacial and interglacial periods in the 

basin resulted in strong denudation of Qilian Mountain. 

Many erosive materials were transported to the middle and 

lower reaches, leading to the formation of some piedmont 

alluvial and pluvial fans (Guo et al. 2015). The impermeable 

basement rocks in this area are composed of conglomerate, 

argillaceous sandstone, and argillaceous siltstone formed in 

tertiary, which are cemented by calcareous mud (Ma et al. 

2013; Su et al. 2020). The main aquifers overlying the 

basement consist of tertiary and quaternary sediments, 

including diluvial and alluvial sediments carried into the 

area by river systems, as well as aeolian and lacustrine 

sediments in some low-lying areas (Ma et al. 2013; Guo et 

al. 2015). These sediments together constitute vital 

unconfined and confined groundwater systems, and the 

general flow direction of groundwater is usually from 

southeast to northwest (Ma et al. 2013; Su et al. 2020). The 

strata of the Shule River valley are mainly quaternary 

gravel, sand, and loam, and groundwater is predominantly 

occurs in the inter-granular pore spaces of gravel and sand 

(Wang et al. 2014). In some places, the groundwater occurs 

in the form of springs, forming low-lying puddles (Ma et al. 

2013). Due to shallow groundwater levels and strong 

evaporation, soil salinization is a severe issue in the study 

area (Wang et al. 2014). 

Despite several prior studies have demonstrated that 

functional traits in P. australis changed with the growing 

environment (Engloner 2004; Eller et al. 2017); however 

few studies have focused on the variation of P. australis 

functional traits in different soil water content (SWC) and 

the relationship between P. australis functional traits and 

soil properties in marsh wetland of the arid regions. Here, 

this study aimed to compare the functional traits of P. 

australis that came from marshes in the Shule River Basin 

in China. It is hypothesized that P. australis functional traits 

(e.g., SLA, LNC, LT and LDMC) related to soil resource 

utilization will change significantly with SWC change and 

coordinated responses of several independent functional 

traits in P. australis will occur with SWC change. 

 

Materials and Methods 
 

Study area 
 

This study was carried out in the middle-lower reaches of 

the Shule River Basin located in the west of the Hexi 

Corridor, Gansu province, northwestern China (38°54′–

40°34′N, 93°45′–97°40′E, altitude 1000–2800 m above sea 

level) and has continental arid climate. Annual precipitation 

is approximately 58–75 mm, mostly concentrated in 

summer, mean annual temperature is around 6.6°C, mean 

annual evaporation is 3100–3500 mm, and mean annual 

wind speed is 3.7–4.2 m s
-1

 in the region, which comprises 

some patches marsh wetlands (Jia et al. 2016). The main 

soil types are bog soils, meadow soils and brown desert soils 

in the marshes. 

 

Sampling and measurement 

 

Sampling collection and measurement were conducted in 

Aug. 2016 (summer season), the mean temperature is 

22~25°C and the precipitation is zero in the sampling 

period. Three marsh sites were surveyed, representing 

spatial repetition of the same marsh wetland type in study 

area, including Shuangta (96°19'E–96°24'E, 40°31'N–

40°34'N), Suganhu (93°46'E–94°01'E, 38°51'N–38°55'N) 

and Yanchiwan (93°48'E–93°51'E, 40°21'N–40°22'N) (Fig. 

1). Within each marsh site, SWC was assessed by W.E.T 

Sensor (Delta-T WET-2, U.K.) from the waters to the desert 

soil in 0–60 cm, meantime changes in P. australis 

community horizon structure and composition were 

observed. three different zonation representing the distinct 

soil water gradient (33.38 ± 1.40, 15.97 ± 1.99 and 10.22 ± 

1.61%) were identified based on the distance from the 

waters, and then established three plots (30 m × 30 m) in 

parallel on each zonation of similar SWC. In each plot, three 

random quadrats (1 m ×1 m) were established to measure 

plant communities’ characteristics and to acquire soil 

sampling (Fig. 1). Overall, 27 plots and 81 quadrats in three 

marsh sites were surveyed. P. australis was the single 

dominant species in the community of all marsh sites. The 

three marsh sites are all located in arid areas. The climate 

and soil conditions for the growth of P. australis are similar. 

The P. australis mainly grow within a certain distance near 

the edge of the water (reservoir or lake) (Fig. 1). 

In each quadrat, the P. australis cover was estimated 

by the projection method. Density of P. australis in each 

quadrat was determined by the count method. The 

aboveground biomass was harvested for P. australis in each 

quadrat, and the constant weight of aboveground biomass 

was obtained by the drying oven at 70°C for 48 h. The 

composite soil samples at a depth of 0–60 cm depth from 

three random samples were collected by a 5 cm diameter 

soil auger in each quadrat. Meanwhile, the SWC from soil 

samples of the same depth was measured in each quadrat. 

The pH value of soil was determined in a 1:2.5 soil water 

solution (Sartourius PB-10, Germany). Soil salinity (SS) 

was determined in a 1:5 soil water solution by conductivity 

meter (Mettler Toledo FE32-Meter, Switzerland). Soil 

organic carbon (SOC) was determined by K2Cr2O7 

volumetric dilution heating method (Sprintsin et al. 2009). 

Soil total nitrogen (STN) was determined by micro-Kjeldahl 
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method (Cao et al. 2019). Soil total phosphorus (STP) was 

determined by ammonium molybdate method after 

persulfate oxidation (Cao et al. 2019). Alkaline 

hydrolyzable N (AN) was determined by Alkaline 

Diffusion method (Shang et al. 2014). Available P (AP) 

was determined by sodium bicarbonate Olsen method 

(Schade et al. 2003). 
 

Trait sampling and measurement 
 

Nine traits of P. australis were measured, including leaf 

thickness (LT), leaf area (LA), specific leaf area (SLA), leaf 

dry matter content (LDMC), maximum height (MH), leaf 

carbon content (LCC), leaf nitrogen content (LNC), and leaf 

phosphorous content (LPC) (see Table 1 for ecological 

significance) (Pérez et al. 2013). The contents of carbon, 

nitrogen and phosphorus in leaves were measured for three 

individuals of P. australis in each plot, and they were 

determined in the laboratory. Other traits were quantified on 

the spot for P. australis by sampling 5 individuals. The 

measurements are showed in Table 1 (Pérez et al. 2013). 

 

Statistical analysis 

 

All data of plant traits and soil properties in each plot were 

first calculated using the arithmetic mean of three quadrats, 

and then all plot data in each site meet the homogeneity of 

variance and normality by log 10 transformed. All soil 

properties data were of soil profile of 0–60 cm depth; 

averages of three soil depths (0–20, 20–40 and 40–60 cm). 

One-way analysis of variance (ANOVA) was applied to 

examine the difference of P. australis community 

characteristics, functional traits and soil properties in 

different SWC. Least significant difference (LSD) test was 

used to compare treatments means. Redundancy analysis 

(RDA) and Pearson correlations analysis were used to 

quantify association between P. australis functional traits 

and soil properties and trait-trait relationships across all 

sites, treating traits and soil properties by log-transformed. 

Redundancy analysis (RDA) was performed using R. v. 

3.6.2 and Canoco5.0. Others analyses were carried out in 

IBM SPSS Statistics 19.0. 

 

Results 
 

Phragmites australis community characteristics and soil 

properties in different SWC 

 

Coverage, density and aboveground biomass of P. australis 

community were significantly greater in the soil high water 

content compared with the soil low water content (P < 0.05; 

Table 2). No significant difference in pH was measured 

among different SWC (P > 0.05). In the high water content, 

SWC and SS were both significantly higher (P < 0.05) than 

the other two water contents. The SOC, STN and AN had 

non-significant difference among the three SWCs. In the 

medium water content, STP and AP were relatively higher 

than the other two water contents, yet the significant 

difference between high and medium water content was 

found for STP, and the significant difference between high 

and medium-low water content was found only for AP 

(Table 2). 

 

P. australis functional traits variation in different SWC 

 

Leaf thickness (LT) showed a gradually increasing trend 

along the different SWC from high to low, while SLA, MH, 

LNC and LPC showed a decreasing trend (Fig. 2). It was 

observed that LT was significantly thinner in the high water 

content soil than the low water content soil (P < 0.05, 

Fig.2), whereas SLA, MH and LPC were significantly 

greater in the high water content of soil than the low water 

content of soil. No significant difference in LA, LDMC, 

LCC and LNC was obtained among three SWC (P > 0.05, 

Fig. 2). 

 

Relationships between P. australis functional traits and 

soil properties variables 

 

In the RDA, the soil properties variables explained 53.7% of 

the total variance in the P. australis functional traits, and 

Monte Carlo test showed that all axes were significantly 

correlated (Table 3). The first two axis explained 32.7 and 

9.9% of the explained variance in the RDA, respectively 

(Fig. 3). The first two axes accounted for 42.9% of the 

standardized soil properties variance. On the first axis, the 

most important variables were SS and AN (positive scores), 

two variation explained 23.3 and 5.7% of the total variance 

in the P. australis functional traits, respectively (Table 3). In 

terms of P. australis traits, the same axis differentiated 

between LPC, SLA, LCC, LNC and LA, LDMC and LT. 

The second axis was mainly driven by SWC (negative 

scores). The variation explained 7.9% of the total variance 

in the P. australis functional traits. In terms of traits, this 

axis differentiated between LPC, SLA and LT. 

The correlation analyses exhibited LT had 

significantly positive correlation with SS (P < 0.01), while it 

was significant negatively correlated to SWC (P < 0.01). 

The SLA was significant negatively correlated to SS (P < 

0.01), STN and AN (P < 0.05). The LDMC had significant 

positively correlation with SS, AN (P < 0.01) and STN, 

SOC (P < 0.05), and LA had significant positively 

correlation with AN (P < 0.01), STN and SOC (P < 0.05). 

The LPC was significant positively correlated to SWC (P < 

0.05), while it significant negatively correlated to SS (P < 

0.01) (Table 4). 

 

Trait-trait relationships 

 

Considering all sites, SLA was significant positively related 

to LCC, LNC and LPC (P < 0.01), whereas it was 
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significantly negatively correlated to LT and LDMC (P < 

0.01). LDMC had significant positively correlation with LT 

(P < 0.05) and LA (P < 0.01), but it had significantly 

negative correlation with LCC, LNC and LPC (P < 0.01). 

The LPC was positively correlated to LNC (P < 0.05), while 

it was negatively correlated to LT (P < 0.01). In addition, 

LCC was significantly positively related to LNC and LPC 

(P < 0.05), and LA was significant positively related to MH 

(P < 0.05) (Table 5). 
 

Discussion 
 

Available water is a key limiting factor for plant growth and 

ecosystem productivity in semiarid and arid regions (Liu et 

al. 2009). In the present study, significant differences in 

coverage, density and aboveground biomass of P. australis 

community were observed between the high, medium and 

low water contents soils (Table 2), which concurred with 

Yang et al. (2011). Higher SWC had higher coverage, 

density and aboveground biomass, because it facilitated the 

root system of P. australis to obtain resource (e.g., water, 

nutrients) for better growth (Yang et al. 2011). The positive 

effects of SWC on P. australis community were also 

reflected the competitive advantages of the dominant 

species through high richness on resources (Aan et al. 2006; 

Yang et al. 2011). Soil pH is principally determined by 

climate, hydrology and geological settings, which may 

produce more alkaline soil due to their comprehensive 

effects in arid regions. In the present study, soil pH was not 

different across SWC gradients and different sites (Table 2). 

This might be due to limited leaching and slow rates of 

weathering and soil development in the arid regions 

(Ayoubi et al. 2014; Yuan et al. 2017). The SS with low 

water content was the highest (Table 2), as SS is 

characterized by surface accumulation in arid regions 

through strong evaporation of SWC (Wang et al. 2008), 

which is a driving factor for the accumulation of soluble salt 

in the surface layer (Peck and Hatton 2003). In the study 

area, the average SOC increased with the decrease of SWC 

due to higher SS that constrained the decomposition rate of 

SOC and enhanced the accumulation of SOC (Elgharably 

and Marschner 2011). The STN and AN were not different 

Table 1: Determination of functional traits in P. australis 
 

Traits/Unit Significance Test methods 

LT (mm) Related to utilization strategies of resource for 
species. It is usually related to leaf toughness1,2 

Using micrometer to measure leaf thickness of a single, the measurement to avoid the 
midrib, the blade flat place to measure 

LA (cm2) Indicating the ability of plants to photosynthesis 

and water use3 

The scanner scans the leaf blades and the MapInfo software calculates and takes the 

average worth of single leaf area 
SLA (cm2·g-1) Indicator of plant photosynthetic rate, relative 

growth rate, nutrient use efficiency3 

Based on the measure of leaf area, 70°C drying leaves of three individual in 

Phragmites australis to constant weight. the average SLA for each individual plant, 

SLA = LA/ leaf dry weight of an individual 
LDMC (g g-1) Related to ecological functions such as resource 

utilization3 

LDMC = leaf dry weight/leaf saturated fresh weight 

MH (cm) Plant Resource Competitiveness and Reproductive 
Strategy3 

Selecting the complete plant with the highest height, and measure the vertical height 
with a ruler 

LCC (mg g-1) Indicator nutritional quality and palatability of 
leaves3 

K2Cr2O7 volumetric dilution heating method 

LNC (mg g-1) Related to plant growth and photosynthetic 

capacity. Nitrogen is the main nutrient element 
limiting plant growth4 

Kjeldahl analysis method 

LPC (mg g-1) Related to plant growth and productivity4 Molybdenum anti-colorimetric method 
1Cianciaruso et al. (2012); 2 Vile et al. (2005); 3Pérez et al. (2013); 4Maracahipes et al. (2018) 

Here LT= leaf thickness, LA= leaf area, SLA= specific leaf area, LDMC= leaf dry matter content, MH= maximum height, LCC= leaf carbon content, LNC= leaf nitrogen content, 

LPC= leaf phosphorous content 

 

Table 2: P. australis community characteristics and soil properties in different SWC (Means ± SE) 
 

Treatments H M L 

P. australis community characteristics    
Coverage (%) 85.30 ± 3.95a 70.45 ± 6.30a 51.63 ± 5.45b 

Density(individual plant m-2) 88.81 ± 15.40a 78.00 ± 14.51a 48.04 ± 7.64b 

Aboveground biomass (g m-2) 475.89 ± 81.65a 357.82 ± 33.07a 224.83 ± 17.61b 
Soil properties    

pH 8.41 ± 0.08a 8.11 ± 0.13a 8.25 ± 0.10a 

Soil water content (%) 33.38 ± 1.40a 15.97 ± 1.99b 10.22 ± 1.61c 
Soil salinity (g kg-1) 2.24 ± 0.45a 11.92 ± 4.23a 23.28 ± 4.38b 

Soil organic carbon (g kg-1) 7.60 ± 1.15a 10.06 ± 2.14a 10.19 ± 2.15a 

Soil total nitrogen (g kg-1) 0.57 ± 0.07a 0.63 ± 0.15a 0.72 ± 0.13a 

Soil total phosphorus (g kg-1) 0.25 ± 0.05a 0.42 ± 0.06b 0.35 ± 0.02ab 

Soil available nitrogen (mg kg-1) 39.49 ± 4.83a 42.87 ± 8.61a 47.57 ± 8.52a 

Soil available phosphorus (mg kg-1) 12.71 ± 2.60a 24.08 ± 4.33b 20.98 ± 2.36b 
H= High water content (n=9); M= Medium water content (n=9); L= Low water content (n=9) 

Different lower case letters from mean values indicate the statistical difference among different SWC at P < 0.05 
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among three SWC gradients (Table 2) because STN and AN 

depend on decomposition of soil organic matter based on 

closely coupled with SOC (Wieder et al. 2015; Göransson 

et al. 2016). However, STP and AP were significantly 

higher in medium water content than that in high water 

content. A possible explanation is that the interdependent 

effect of SWC and SS promotes the dissolution and 

precipitation of phosphorus, which in turn facilitates the 

increase in the content of various forms of phosphorus in the 

soil (Hartzell and Jordan 2012). 

Functional traits of P. australis were changed due to 

variations in nutrients under divergent SWC (Fig. 2), 

supporting the hypothesis of study. Functional traits are 

related to the acquisition of plant resources (water and 

nutrient), photosynthetic capacity and reproduction 

strategies (Westoby et al. 2002; Pérez et al. 2013; Scalon et 

al. 2017). In this study, lower SWC resulted more LT and 

LDMC, lower SLA, MH, LNC and LPC (Fig. 2). Generally, 

the greater LT and LDMC in plants have resistance to 

environmental stress (e.g., water shortage) in order to use 

limited resource (Maharjan et al. 2011). A relatively lower 

SLA of P. australis appeared in low water content to 

strengthen the photosynthetic efficiency of the leaves and 

reduce water loss (Shipley et al. 2005; Maharjan et al. 

2011). In an earlier study, it was found that plants have 

higher nutrient concentrations in arid regions (Wright and 

Westoby 2003); which is inconsistent with the present study 

findings. A possible explanation is that higher LPC of P. 

australis in the high or medium SWC may be caused by 

altering the growth rate and improving the resorption 

efficiency of phosphorus by oneself (Richardson et al. 

1999). In addition, in the present study, no significant 

difference in LA, LDMC, LCC and LNC was found among 

three water content gradients (Fig. 2), and thus the response 

of functional traits of P. australis to SWC is still required 

further research. The response of plant functional traits to 

Table 3: The explained variance of soil properties variable and their significant analysis in the first two axes in redundancy analysis 

(RDA) ordination 

 
Soil properties variable RDA1 RDA2 Explains (%) F P 

SS 0.7678 -0.5077 23.30 7.60 0.002** 
AN 0.7223 -0.0525 5.70 2.20 0.048* 

STN 0.6459 -0.1797 0.30 0.10 0.996 

SOC 0.6325 -0.0596 3.60 1.50 0.186 
AP 0.3205 -0.3136 5.90 2.20 0.050 

STP -0.1383 -0.2962 4.10 1.50 0.150 

pH -0.1422 -0.4184 2.90 1.20 0.330 
SWC -0.2220 0.6667 7.90 2.70 0.034* 

On First Axis: F = 8.8, P = 0.002 

On All Axes: F = 2.6, P = 0.002 
*, **= Significant at P < 0.05, P < 0.01 

Here SS= soil salinity, AN= available nitrogen, STN= soil total nitrogen, SOC= soil organic carbon, AP= available phosphorus, STP= soil total phosphorus, SWC= soil water content 

 

  

  

 

 
 

Fig. 1: Location of three marsh sites of the middle-lower reaches of the Shule River Basin 
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environment changes is not only reflected in independent 

functional traits, but also reflected in the coordinated 

combination of multiple functional traits (Kühner and 

Kleyer 2009). Low SLA, thick LT and low LNC coordinate 

each other in order to high-efficiently make use of limited 

resources under conditions of poor resources (Bernard et al. 

2012). As our hypothesis, the findings demonstrated that 

functional traits were a series of synergistically associations 

Table 4: Pearson’s correlation coefficient between functional trait and soil properties across all sites 

 
 LT LA SLA LDMC LCC LNC LPC MH 

SS 0.673** 0.174 -0.699** 0.516** -0.160 -0.312 -0.611** -0.211 

AN 0.130 0.611** -0.447* 0.635** -0.090 -0.252 -0.361 0.333 

STN 0.142 0.431* -0.384* 0.469* 0.001 -0.009 -0.334 0.154 
SOC 0.038 0.469* -0.349 0.470* 0.022 -0.257 -0.199 0.278 

AP 0.289 0.114 -0.265 0.224 0.292 0.138 -0.264 0.049 

STP 0.235 -0.182 -0.112 -0.092 0.267 -0.063 -0.161 -0.065 
pH -0.065 0.016 -0.062 0.066 -0.020 0.158 -0.098 -0.278 

SWC -0.744** -0.050 0.564** -0.305 0.115 0.181 0.538** 0.061 
*, **= Significant at P < 0.05, P < 0.01 

Here LT= leaf thickness, LA= leaf area, SLA= specific leaf area, LDMC= leaf dry matter content, MH= maximum height, LCC= leaf carbon content, LNC= leaf nitrogen content, 

LPC= leaf phosphorous content, SS= soil salinity, AN= available nitrogen, STN= soil total nitrogen, SOC= soil organic carbon, AP= available phosphorus, STP= soil total 

phosphorus, SWC= soil water content 
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Fig. 2: Boxplots of untransformed P. australis traits for LT, LA, SLA, LDMC, MH, LCC, LNC, LPC in different SWC High: High water 

content (n=9); Medium: Medium water content (n=9); Low: Low water content (n=9) 
Different lower letters indicate significant differences in different SWC at P < 0.05 

Here LT= leaf thickness, LA= leaf area, SLA= specific leaf area, LDMC= leaf dry matter content, MH= maximum height, LCC= leaf carbon content, LNC= leaf nitrogen content, 

LPC= leaf phosphorous content 
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(Table 4). These results agreed with the finding that 

previous studies have shown (Du et al. 2015), suggesting 

that P. australis had ‘slower’ leaves (i.e., low SLA and LNC 

and LPC, and high LDMC and LT) and conservative 

strategy (Schleip et al. 2013; Moreno et al. 2014; Jager et al. 

2015). P. australis adjust the strategies for resource use and 

allocation through the coordinated changes of multiple 

functional traits to cope with resource-poor habitats in 

marshes of arid regions, reflecting trade-offs relationship of 

P. australis functional traits. P. australis exhibited a higher 

phenotypic plasticity in poor-resources marshes of arid areas 

(Van et al. 1993). 

In terms of the results of RDA (Table 3), SS and AN 

were the dominate factors in driving the variation of P. 

australis functional traits. The influence of SS on these 

functional traits mainly reflects the survival strategy in P. 

australis under saline stress. A simulate experimental study 

proved that SS weakened CO2-assimilation and resulted 

in reducing aboveground biomass production and growth 

in plants (Eller et al. 2014). P. australis overcome the 

osmotic effects and ionic toxicity of SS stress by the 

above way. As SS diminished SLA, LPC, LDMC and LT 

increased in P. australis due to decrease in photosynthetic 

rate (Eller et al. 2014; Hameed et al. 2019). Soil AN, an 

effective nutrient that can be directly absorbed by plants, 

affects ecological processes such as plant root invasion, 

vegetation litter input, and absorption and release of 

microbial metabolite, which may cause the variation of LA 

and LDMC in P. australis by promoting photosynthesis and 

increasing dry matter accumulation (Miatto et al. 2016). The 

AN was positively correlated with LA and LDMC, while it 

was negatively correlated with SLA (Table 4). This 

supported the findings that soil fertility can induce a 

coordinated response of multiple independent functional 

traits (Jager et al. 2015). 

 

Conclusion 
 

Results indicated that divergent soil water contents affected 

the functional traits of P. australis mainly by its effect on soil 

salinity and available nitrogen. Moreover, due to 

conservative strategy, P. australis adapted well the resource-

poor habitats in marshes of arid regions through the 

coordinated combination of multiple functional traits i.e. low 

specific leaf area, leaf nitrogen content and leaf phosphorous 

content, high leaf dry matter content and leaf thickness. 
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